Tutorial 12

April 21, 2016

1. Derive the representation formula for harmonic functions in two dimensions

Let $u \in C^1(\bar{D}) \cap C^2(D)$ be a harmonic function on D. Let $\mathbf{x}_0 \in D$, then

$$u(\mathbf{x}_0) = \frac{1}{2\pi} \int_{\partial D} \left[u(\mathbf{x}) \frac{\partial}{\partial n} \log |\mathbf{x} - \mathbf{x}_0| - \frac{\partial u}{\partial n} \log |\mathbf{x} - \mathbf{x}_0| \right] ds$$

Solution: Let D_{ϵ} be the region D with a ball (of radius ϵ and the center \mathbf{x}_0) excised. For simplicity let \mathbf{x}_0 be the origin and set $r = \sqrt{x^2 + y^2}$. By the Green's second identity,

$$\int_{\partial D_{\epsilon}} \left[u \cdot \frac{\partial \log r}{\partial n} - \frac{\partial u}{\partial n} \cdot \log r \right] dS = 0.$$

Noting that ∂D_{ϵ} consists of two parts and on $\{|\mathbf{x}|=r=\epsilon\}, \frac{\partial}{\partial n}=-\frac{\partial}{\partial r}$, we have

$$\int_{\partial D} \left[u \cdot \frac{\partial \log r}{\partial n} - \frac{\partial u}{\partial n} \cdot \log r \right] dS = \int_{r=\epsilon} \left[u \cdot \frac{\partial \log r}{\partial r} - \frac{\partial u}{\partial r} \cdot \log r \right] dS, \quad \text{for } \forall \epsilon > 0.$$
 (1)

Now the right side of the identity equals

$$\frac{1}{\epsilon} \int_{r=\epsilon} u dS - \log \epsilon \int_{r=\epsilon} \frac{\partial u}{\partial r} dS = 2\pi \bar{u} - 2\pi \epsilon \log \epsilon \frac{\overline{\partial u}}{\partial r},$$

where \overline{u} denotes the average value of u on the circle $\{r=c\}$, and $\frac{\partial u}{\partial r}$ denotes the average value of $\frac{\partial u}{\partial r}$ on this circle. Since u is continuous and $\frac{\partial u}{\partial r}$ is bounded, we have

$$2\pi \overline{u} - 2\pi \epsilon \log \epsilon \frac{\overline{\partial u}}{\partial r} \to 2\pi u(0)$$
 as $\epsilon \to 0$.

So let ϵ tend to 0 in identity (1) and then we can obtain the representation formula.

2. Theorem 2 on P181

The solution of the problem

$$\Delta u = f$$
 in D $u = h$ on ∂D

is given by

$$u(\mathbf{x}_0) = \iint_{\partial D} h(\mathbf{x}) \frac{\partial G(\mathbf{x}, \mathbf{x}_0)}{\partial n} dS + \iiint_{D} f(\mathbf{x}) G(\mathbf{x}, \mathbf{x}_0) d\mathbf{x}$$

Solution: Let $v(\mathbf{x}) = -\frac{1}{4\pi |\mathbf{x} - \mathbf{x}_0|}, \mathbf{x} \neq \mathbf{x}_0$, then $\Delta v(\mathbf{x}) = 0, \mathbf{x} \neq \mathbf{x}_0$.

Let D_{ϵ} be the region D with a ball (of radius ϵ and the center \mathbf{x}_0) excised.

Applying Green's Second Identity to v and u on D_{ϵ} , we have

$$\iiint_{D_{\epsilon}} -vf d\mathbf{x} = \iiint_{D_{\epsilon}} u\Delta v - v\Delta u d\mathbf{x} = \iint_{\partial D_{\epsilon}} \left[u \cdot \frac{\partial v}{\partial n} - \frac{\partial u}{\partial n} \cdot v \right] dS$$

1

Noting that ∂D_{ϵ} consists of two parts and on $\{|\mathbf{x} - \mathbf{x}_0| = r = \epsilon\}, \frac{\partial}{\partial n} = -\frac{\partial}{\partial r}$, we have

$$\iint_{r=\epsilon} u \frac{\partial v}{\partial n} - \frac{\partial u}{\partial n} v dS = -\iint_{r=\epsilon} u \frac{\partial v}{\partial r} - \frac{\partial u}{\partial r} v dS = -\frac{1}{4\pi\epsilon^2} \iint_{r=\epsilon} u dS - \frac{1}{4\pi\epsilon} \iint_{r=\epsilon} \frac{\partial u}{\partial r} dS = -\bar{u} - \epsilon \frac{\overline{\partial u}}{\overline{\partial r}} dS = -\bar{u} - \epsilon \frac{\overline{\partial u}}{\overline{\partial u}} dS = -\bar{u} - \epsilon \frac{\overline$$

where \overline{u} denotes the average value of u on the sphere $\{r=c\}$, and $\frac{\partial u}{\partial r}$ denotes the average value of $\frac{\partial u}{\partial r}$ on this sphere. Since u is continuous and $\frac{\partial u}{\partial r}$ is bounded, we have

$$-\overline{u} - \epsilon \frac{\overline{\partial u}}{\partial r} \to -u(\mathbf{x}_0) \text{ as } \epsilon \to 0.$$

So let ϵ tend to 0 and then we have

$$\iiint_{D} -vf d\mathbf{x} = \iint_{\partial D} \left[u \cdot \frac{\partial v}{\partial n} - \frac{\partial u}{\partial n} \cdot v \right] dS - u(\mathbf{x}_{0})$$
 (2)

Suppose $G(\mathbf{x}, \mathbf{x}_0)$ is the Green's function for $-\Delta$, then H = G - v is a harmonic function on D, and G = 0 on ∂D . Applying the second Green's Identity to u and H on D, we have

$$\iiint_{D} -Hf d\mathbf{x} = \iiint_{D} u\Delta H - H\Delta u d\mathbf{x} = \iint_{\partial D} \left[u \cdot \frac{\partial H}{\partial n} - \frac{\partial u}{\partial n} \cdot H \right] dS \tag{3}$$

Adding (2) and (3) and using G = H + v in D,G = 0 on ∂D , we get

$$\iiint_D -Gf d\mathbf{x} = \iint_{\partial D} \left[u \cdot \frac{\partial G}{\partial n} - \frac{\partial u}{\partial n} \cdot G \right] dS - u(\mathbf{x}_0) = \iint_{\partial D} h \frac{\partial G}{\partial n} dS - u(\mathbf{x}_0)$$

That is,

$$u(\mathbf{x}_0) = \iint_{\partial D} h \frac{\partial G}{\partial n} dS + \iiint_{D} G f d\mathbf{x}$$